Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.619
Filtrar
1.
J Circadian Rhythms ; 22: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617710

RESUMO

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

2.
J Circadian Rhythms ; 22: 1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617711

RESUMO

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

3.
Inorg Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619892

RESUMO

Metallodrug-based photodynamic therapy (PDT) agents have demonstrated significant superiority against cancers, while their different chirality-induced biological activities remain largely unexplored. In this work, we successfully developed a pair of enantiopure mononuclear Ir(III)-based TLD-1433 analogues, Δ-Ir-3T and Λ-Ir-3T, and their enantiomer-dependent anticancer behaviors were investigated. Photophysical measurements revealed that they display high photostability and chemical stability, strong absorption at 400 nm with high molar extinction coefficients (ε = 5.03 × 104 M-1 cm-1), and good 1O2 relative quantum yields (ΦΔ ≈ 47%). Δ- and Λ-Ir-3T showed potent efficacy against MCF-7 cancer cells, with a photocytotoxicity index of ≤44 238. This impressive result, to the best of our knowledge, represents the highest value among reported mononuclear Ir(III)-based PDT agents. Remarkably, Λ-Ir-3T tended to be more potent than Δ-Ir-3T when tested against SK-MEL-28, HepG2, and LO2 cells, with consistent results across multiple test repetitions.

4.
J Colloid Interface Sci ; 667: 73-81, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621333

RESUMO

Improving the efficiency of overall water splitting (OWS) is crucial due to the slow four-electron transfer process in the oxygen evolution reaction (OER). The coupling of the thermodynamically favorable hydrazine oxidation reaction (HzOR) with the hydrogen evolution reaction (HER) significantly boosts hydrogen production. A Ru-decorated MoNi/MoO2 micropillar (Ru-MoNi/MoO2) has been synthesized using a hydrothermal followed by reduction annealing. Benefiting from Ru moderating the active interface of Mo-based alloys/oxides and the unique one-dimensional micropillar morphology. The synthesized Ru-MoNi/MoO2 exhibits outstanding bifunctional activity for HER and HzOR, achieving 10 mA cm-2 at merely -13 mV and -34 mV in 1 M KOH and 1 M KOH + 0.5 M N2H4, respectively. Notably, with Ru-MoNi/MoO2 in a dual-electrode setup, only 0.57 V is needed to achieve 50 mA cm-2, demonstrating good stability and facilitating hydrazine-assisted water splitting (OHzS). This work offers insights into the modulation of alloy/metal oxide active interfaces, contributing to the development of efficient bifunctional catalysts for HER and HzOR.

5.
Inorg Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621361

RESUMO

Heteroatom doping and heterostructure construction are the key methods to improve the performance of electrocatalysts. However, developing such catalysts remains a challenging task. Herein, we designed two comparable polymers, phytic acid/thiourea polymer (PATP) and phytic acid/urea polymer (PAUP), as precursors, which contain C, N, S/O, and P by microwave heating. To pinpoint how the introduction of sulfur would affect the electronic structure and catalytic activity, these two polymers were physically blended with CoCo-Prussian blue analogue (CoCo-PBA) and further calcination, respectively. The highly dispersed CoP/Co2P-rich interfacial catalysts anchored on the N,S-codoped or N-doped carbon support were successfully prepared (CoP/Co2P@CNS and CoP/Co2P@CN). The prepared CoP/Co2P@CNS catalyst showed good ORR properties (E1/2 = 0.856 V vs RHE) and OER properties (Ej10 = 1.54 V vs RHE), which were superior to the commercial Pt/C and RuO2 catalysts. The reversible oxygen electrode index (ΔE = Ej10 - E1/2) can reach ∼0.684 V. Meanwhile, the rechargeable zinc-air battery assembled with a CoP/Co2P@CNS catalyst as the air cathode also showed excellent performance, with a charge-discharge cycle stability of up to 900 h. DFT calculations further confirm that the introduction of S atoms can affect the electronic structure and enhance the catalytic activity of C and N atoms on carbon support.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38624155

RESUMO

The novel 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) groups immobilized on functional polymers or nanoparticles emerged as potential Pickering interfacial catalysts (PICs) for effective catalysis in biphasic systems. In this study, a snowman-shaped Janus-structured polymer with TEMPO-anchored nanohybrid particles (SM-JPP-TEMPO) was prepared and employed as a potential PIC in the Anelli-Montanari system for the selective oxidation of alcohol. The amphiphilic character of SM-JPP-TEMPO particles plays a dual role as an emulsifier and catalyst in the Pickering emulsion. As a result, it enables smaller droplets (102 µm) at the water-in-oil (W/O) interface and reduces the interfacial tension from 26.58 to 17.38 mN/m, which improves the stability of the Pickering emulsion system. This constructed Pickering emulsion microreactor offers a larger interface contact area and shortens the mass transfer distance of the substrate of cinnamyl alcohol, which significantly enhances the catalytic conversion at the Anelli-Montanari oxidation system, thus achieving remarkable conversion efficiency of (92.3%) with excellent selectivity (99%) in static (stirring-free) condition. It was found that the Janus nanohybrid catalyst (SM-JPP-TEMPO) enhanced 1.29-fold catalytic efficiency compared to the TEMPO grafted spherical polystyrene nanoparticle (PS-NPs-TEMPO) catalyst (72%). Moreover, after seven consecutive cycles, the Janus nanocatalyst (SM-JPP-TEMPO) maintained the conversion significantly. Hence, these results collectively highlight that the amphiphilic SM-JPP-TEMPO catalyst provides an efficient and eco-friendly strategy for the intensification of liquid-liquid biphasic reaction systems for potential applications in industries.

7.
World J Urol ; 42(1): 238, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627315

RESUMO

BACKGROUND: Accurate estimation of the glomerular filtration rate (GFR) is clinically crucial for determining the status of obstruction, developing treatment strategies, and predicting prognosis in obstructive nephropathy (ON). We aimed to develop a deep learning-based system, named UroAngel, for non-invasive and convenient prediction of single-kidney function level. METHODS: We retrospectively collected computed tomography urography (CTU) images and emission computed tomography diagnostic reports of 520 ON patients. A 3D U-Net model was used to segment the renal parenchyma, and a logistic regression multi-classification model was used to predict renal function level. We compared the predictive performance of UroAngel with the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations, and two expert radiologists in an additional 40 ON patients to validate clinical effectiveness. RESULTS: UroAngel based on 3D U-Net convolutional neural network could segment the renal cortex accurately, with a Dice similarity coefficient of 0.861. Using the segmented renal cortex to predict renal function stage had high performance with an accuracy of 0.918, outperforming MDRD and CKD-EPI and two radiologists. CONCLUSIONS: We proposed an automated 3D U-Net-based analysis system for direct prediction of single-kidney function stage from CTU images. UroAngel could accurately predict single-kidney function in ON patients, providing a novel, reliable, convenient, and non-invasive method.


Assuntos
Aprendizado Profundo , Insuficiência Renal Crônica , Rim Único , Humanos , Estudos Retrospectivos , Rim/diagnóstico por imagem , Insuficiência Renal Crônica/diagnóstico , Taxa de Filtração Glomerular , Tomografia , Creatinina
8.
Front Pharmacol ; 15: 1380277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628645

RESUMO

Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1ß, TGF-ß, and IL-8 in the ileum, as well as IL-1ß and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.

9.
Phys Rev E ; 109(3-1): 034118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632744

RESUMO

It is expected that the energy-diffusion propagator in a one-dimensional nonlinear lattice with three conserved quantities: energy, momentum, and stretch, consists of a central heat mode and two sound modes. The heat mode follows a Lévy distribution. Consequently, the heat diffusion is super, i.e., the second moment of the diffusion propagator diverges as t^{ß} with ß>1; and the heat conduction is anomalous, i.e., the heat conductivity is size dependent and diverges with size N by N^{α}, with α>0. In this paper, we study a one-dimensional lattice with two-dimensional transverse motions, in which the total angular momentum also conserves. More importantly, the diffusion of this conserved quantity is ballistic. Surprisingly, the above pictures and the values of the mentioned power exponents keep unchanged. The universality of the scalings is then further extended. On the other hand, the detailed strengths of heat transports are largely enhanced. Such a counterintuitive finding can be explained by the change of the phonon mean-free path of the lattices.

10.
Curr Biol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38608677

RESUMO

Prefrontal (PFC) and hippocampal (HPC) sequences of neuronal firing modulated by theta rhythms could represent upcoming choices during spatial memory-guided decision-making. How the PFC-HPC network dynamically coordinates theta sequences to predict specific goal locations and how it is interrupted in memory impairments induced by amyloid beta (Aß) remain unclear. Here, we detected theta sequences of firing activities of PFC neurons and HPC place cells during goal-directed spatial memory tasks. We found that PFC ensembles exhibited predictive representation of the specific goal location since the starting phase of memory retrieval, earlier than the hippocampus. High predictive accuracy of PFC theta sequences existed during successful memory retrieval and positively correlated with memory performance. Coordinated PFC-HPC sequences showed PFC-dominant prediction of goal locations during successful memory retrieval. Furthermore, we found that theta sequences of both regions still existed under Aß accumulation, whereas their predictive representation of goal locations was weakened with disrupted spatial representation of HPC place cells and PFC neurons. These findings highlight the essential role of coordinated PFC-HPC sequences in successful memory retrieval of a precise goal location.

11.
Nat Commun ; 15(1): 3117, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600081

RESUMO

Solute structure and its evolution in supersaturated aqueous solutions are key clues to understand Ostwald's step rule. Here, we measure the structural evolution of solute molecules in highly supersaturated solutions of KH2PO4 (KDP) and NH4H2PO4 (ADP) using a combination of electrostatic levitation and synchrotron X-ray scattering. The measurement reveals the existence of a solution-solution transition in KDP solution, caused by changing molecular symmetries and structural evolution of the solution with supersaturation. Moreover, we find that the molecular symmetry of H2PO4- impacts on phase selection. These findings manifest that molecular symmetry and its structural evolution can govern the crystallization pathways in aqueous solutions, explaining the microscopic origin of Ostwald's step rule.

12.
ACS Nano ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613506

RESUMO

A Na4MnV(PO4)3 (NMVP) cathode is regarded as a promising cathode candidate for sodium-ion batteries (SIBs). However, issues such as low electronic conductivity and partial cation dissolution contribute to high polarization and structure distortion. Herein, we engineered the local electron density and reaction kinetic properties of NMVP cathodes with varying oxygen vacancies by introducing varying amounts of Zr doping and carbon coating. The optimized sample exhibited a high-rate capacity of 71.8 mAh g-1 at 30 C (83.1% capacity retention after 1000 cycles) and excellent performance over a wide temperature range (84.1 mAh g-1 at 60 °C and 61.4 mAh g-1 at -30 °C). In situ X-ray diffraction technology confirmed a redox solid solution and a two-phase reaction mechanism, revealing minor changes in cell volume and slight strain variations after Zr doping, effectively suppressing the structural distortion. Theoretical calculations illustrated that Zr doping largely shrinks the band gap of NMVP, enriches local electron density, and slightly alters the local element distribution and bond lengths. Moreover, full-cells have shown high energy density (259.9 Wh kg-1) and outstanding cycling stability (200 cycles). The work provides fresh insights into the synergistic effect of strain suppressing and interface engineering in promoting the development of wide temperature range and long-calendar-life SIBs.

13.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612871

RESUMO

Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.


Assuntos
Fumar Cigarros , Doença de Crohn , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença de Crohn/genética , Fumar Cigarros/efeitos adversos , RNA Ribossômico 16S , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica/genética , Glicoproteínas de Membrana
14.
Comput Methods Programs Biomed ; 250: 108173, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38615386

RESUMO

BACKGROUND AND OBJECTIVE: The conventional valve stents that are cylindrical in shape will become elliptical when implanted in bicuspid aortic valve, thereby reducing the durability of the artificial valve. In this study, a new design of valve stent is presented where valve stents have elliptical cross-section at the annulus and it is expected to have better expandability and circle shape during the interaction between the stent and bicuspid aortic valve, thereby extending the durability of artificial valve. METHODS: Finite element method (FEM) is used to study the mechanical behavior of the novel valve stent in the bicuspid aortic valve. The effects of three matching relationship between the ellipticity of the stents and the ellipticity of the annulus (i.e., the ellipticity of the stent is greater than, equal to and less than the annulus ellipticity, respectively) on the mechanical behavior of stent expansion are studied. In addition, the expansion mechanical behavior of the novel valve stent at different implantation depths is also compared. RESULTS: Results indicate that novel valve stent implantation with elliptical features is superior to conventional circular valve stent. When the novel valve stent ellipticity is less than the annulus ellipticity, the ellipticity of the novel valve stent after implantation is smaller than that of the conventional circular valve stent. This indicated that the novel valve stent has better expandability and post-expansion shape, making artificial valve to have better durability. The risk of paravalvular leak after implantation is lowest when the novel valve stent ellipticity is less than annulus ellipticity. When the novel valve stent ellipticity coincides with annulus ellipticity, the aortic wall is subjected to greatest stress. With the increase of implantation depth, the stress on the novel valve stent decrease. CONCLUSIONS: This study might provide insights for improving stent design for bicuspid aortic valve.

15.
J Agric Food Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619332

RESUMO

The present work was conducted to research the potential mechanism of palmatine (PAL) on lipopolysaccharide (LPS)-caused acute lung injury (ALI). Network pharmacology and bioinformatic analyses were carried out. Mice were intragastrically treated with PAL and intratracheally stimulated with LPS. LPS-induced RAW264.7 cells were employed for the in vitro model. The MPO activity, W/D ratio, neutrophils, total cell number in BALF, and histopathological alteration were examined. The levels of TNF-α, IL-1ß, IL-6, IL-18, IL-4, and IL-10 in serum, BALF, and supernatant were examined by ELISA. The mRNA expressions of iNOS, CD68, Arg1, Ym1, and CD206 and protein expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome were detected by PCR, WB, and immunofluorescence. The NAMPT inhibitor FK866, TLR2 inhibitor C29, CCR1 inhibitor BX471, NAMPT-overexpression (OE) plasmid, and TLR2-OE plasmid were used for mechanism research. As a result, PAL relieved the symptoms of ALI. PAL inhibited M1 phenotype indices and promoted M2 phenotype indices in both LPS-induced mice and RAW264.7 cells. PAL also inhibited the expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome. The treatments with FK866, NAMPT-OE plasmid, C29, TLR2-OE plasmid, and BX471 proved that PAL exerted its effect via NAMPT/TLR2/CCR1. Molecular docking suggested that PAL might combine with NAMPT. In conclusion, PAL ameliorated LPS-induced ALI by inhibiting M1 phenotype macrophage polarization via NAMPT/TLR2/CCR1 signaling.

16.
J Sci Food Agric ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625751

RESUMO

BACKGROUND: Mung beans are abundant in nutrition, but their leguminous flavor limits their development. Lactic Acid Bacteria (LAB) fermentation can decrease unwanted bean flavors in legumes and enhance their flavor. This study examined the influence of Lactobacillus fermentation on the flavor characteristics of mung bean flour (MBF) using volatile compounds and non-targeted metabolomics. RESULTS: Lactobacillus plantarum LP90, Lactobacillus casei LC89, and Lactobacillus acidophilus LA85 eliminated 61.37%, 48.29%, and 43.73% of the primary bean odor aldehydes from MBF. The results of relative odor activity values (ROAV) showed that fermented mung bean flour (FMBF) included volatile chemicals that contributed to fruity, flowery, and milky aromas. These compounds included ethyl acetate, hexyl formate, 3-hydroxy-2-butanone, and 2,3-butanedione. The levels of amino acids with a fresh sweet flavor increased significantly by 93.89%, 49.40%, and 35.27% in LP90, LC89, and LA85, respectively. A total of 49 up-regulated and 13 down-regulated significantly differential metabolites were annotated, and 10 metabolic pathways were screened for contributing to the flavor. The correlation between important volatile compounds and non-volatile substances relies on two primary metabolic pathways: the citric acid cycle pathway and the amino acid metabolic system. CONCLUSION: The flavor of MBF was greatly enhanced by the process of Lactobacillus fermentation, with LP90 having the most notable impact. These results serve as a reference for identifying the flavor of FMBF. This article is protected by copyright. All rights reserved.

17.
Carbohydr Res ; 539: 109117, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626569

RESUMO

Polygala tenuifolia is a traditional Chinese medicine with a long history of application, with the efficacy of suppressing cough, calming asthma, tranquilizing the mind, and benefiting the intellect. It is classified as a top-quality medicine in Shennong's Classic of Materia Medica. Polysaccharide is an important active ingredient in Polygala tenuifolia, which consists of several monosaccharides, including Ara, Gal, Glc, and so on. In this review, the preparation methods, structural characteristics, and biological activities of polysaccharides from Polygala tenuifolia are summarized, and the problems in the current studies are discussed to support further research, development, and utilization.

18.
Int J Biol Macromol ; : 131502, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626834

RESUMO

Piperlonguminine (PLG) is a major alkaloid found in Piper longum fruits. It has been shown to possess a variety of biological activities, including anti-tumor, anti-hyperlipidemic, anti-renal fibrosis and anti-inflammatory properties. Previous studies have reported that PLG inhibits various CYP450 enzymes. The main objective of this study was to identify reactive metabolites of PLG in vitro and assess its ability to inhibit CYP450. In rat and human liver microsomal incubation systems exposed to PLG, two oxidized metabolites (M1 and M2) were detected. Additionally, in microsomes where N-acetylcysteine was used as a trapping agent, N-acetylcysteine conjugates (M3, M4, M5 and M6) of four isomeric O-quinone-derived reactive metabolites were found. The formation of metabolites was dependent on NADPH. Inhibition and recombinant CYP450 enzyme incubation experiments showed that CYP3A4 was the primary enzyme responsible for the metabolic activation of PLG. This study characterized the O-dealkylated metabolite (M1) through chemical synthesis. The IC50 shift assay showed time-dependent inhibition of CYP3A4, 2C9, 2E1, 2C8 and 2D6 by PLG. This research contributes to the understanding of PLG-induced enzyme inhibition and bioactivation.

19.
Langmuir ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627903

RESUMO

In this study, we proposed a method for fabricating Janus sheets using biological "microflowers" as a sacrificial template. The microflower-templated Janus sheets (MF-JNSs) were employed as a foam stabilizer in foam separation of the whey soybean protein (WSP). The MF-JNSs took inorganic hybrid microflowers (BSA@Cu3 (PO4)2-MF) as template, followed by the sequential attachment of protamine and silica to the surface of the BSA@Cu3(PO4)2-MF. Subsequently, the template was removed using ethylenediaminetetraacetic acid after the silicon dioxide was modified by 3-(methacryloyloxy) propyl trimethoxysilane. Upon template dissolution, the modified silica layer, lacking support from the core, fractured to form the MF-JNSs. This method omitted the step of treating the hollow ball by external force and obtained Janus sheets in one step, indicating that it was simple and feasible. The morphology, structure, and composition of the MF-JNSs were analyzed by SEM, TEM, AFM, XRD, and FT-IR. The MF-JNSs were found to delay the breakage time of the Pickering emulsion, demonstrating their emulsion stabilizing capability. Importantly, they significantly enhanced the foam half-life and foam height of soybean whey wastewater (SWW). Moreover, the recovery percentage and enrichment ratio of WSP, separated from SWW by foam separation, were improved to 81 ± 0.28 and 1.20 ± 0.05%, respectively.

20.
J Agric Food Chem ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629800

RESUMO

Lignin provides structural support to plants; however, it reduces their utilization rate. According to our previous studies, selenium (Se) reduces lignin accumulation in alfalfa, but the specific mechanism involved remains unclear. Therefore, at the seedling stage, four root irrigation treatments using 2.5, 50, and 5 µmol/L sodium selenite (S-RI), selenomethionine (SS-RI), Se nanoparticles (SSS-RI), and deionized water (CK-RI) were performed. At the branching stage, four treatments of foliar spraying with the three Se fertilizers described above at a concentration of 0.5 mmol/L (S-FS, SS-FS, and SSS-FS) and deionized water (CK-FS) were administered. The results revealed that all Se treatments chiefly reduced the level of deposition of syringyl (S) lignin in the first internode of alfalfa stems. SS-FS and SSS-FS treatments mainly reduced the deposition of S and guaiacyl (G) lignins in the sixth internode of alfalfa stems, respectively, while S-FS treatment only slightly reduced the deposition of G lignin. S, SS, and SSS-RI treatments reduced the level of deposition of S and G lignins in the sixth internode of alfalfa stems. Se application increased plant height, stem diameter, epidermis (cortex) thickness, primary xylem vessel number (diameter), and pith diameter of alfalfa but decreased primary xylem area and pith parenchyma cell wall thickness of the first internode, and SS(SSS)-FS treatment reduced the mechanical strength of alfalfa stems. Therefore, Se application could decrease lignin accumulation by regulating the organizational structure parameters of alfalfa stems and the deposition pattern of the lignin monomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...